deterministicGrouping.js 13.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/*
	MIT License http://www.opensource.org/licenses/mit-license.php
	Author Tobias Koppers @sokra
*/

"use strict";

// Simulations show these probabilities for a single change
// 93.1% that one group is invalidated
// 4.8% that two groups are invalidated
// 1.1% that 3 groups are invalidated
// 0.1% that 4 or more groups are invalidated
//
// And these for removing/adding 10 lexically adjacent files
// 64.5% that one group is invalidated
// 24.8% that two groups are invalidated
// 7.8% that 3 groups are invalidated
// 2.7% that 4 or more groups are invalidated
//
// And these for removing/adding 3 random files
// 0% that one group is invalidated
// 3.7% that two groups are invalidated
// 80.8% that 3 groups are invalidated
// 12.3% that 4 groups are invalidated
// 3.2% that 5 or more groups are invalidated

/**
 *
 * @param {string} a key
 * @param {string} b key
 * @returns {number} the similarity as number
 */
const similarity = (a, b) => {
	const l = Math.min(a.length, b.length);
	let dist = 0;
	for (let i = 0; i < l; i++) {
		const ca = a.charCodeAt(i);
		const cb = b.charCodeAt(i);
		dist += Math.max(0, 10 - Math.abs(ca - cb));
	}
	return dist;
};

/**
 * @param {string} a key
 * @param {string} b key
 * @param {Set<string>} usedNames set of already used names
 * @returns {string} the common part and a single char for the difference
 */
const getName = (a, b, usedNames) => {
	const l = Math.min(a.length, b.length);
	let i = 0;
	while (i < l) {
		if (a.charCodeAt(i) !== b.charCodeAt(i)) {
			i++;
			break;
		}
		i++;
	}
	while (i < l) {
		const name = a.slice(0, i);
		const lowerName = name.toLowerCase();
		if (!usedNames.has(lowerName)) {
			usedNames.add(lowerName);
			return name;
		}
		i++;
	}
	// names always contain a hash, so this is always unique
	// we don't need to check usedNames nor add it
	return a;
};

/**
 * @param {Record<string, number>} total total size
 * @param {Record<string, number>} size single size
 * @returns {void}
 */
const addSizeTo = (total, size) => {
	for (const key of Object.keys(size)) {
		total[key] = (total[key] || 0) + size[key];
	}
};

/**
 * @param {Record<string, number>} total total size
 * @param {Record<string, number>} size single size
 * @returns {void}
 */
const subtractSizeFrom = (total, size) => {
	for (const key of Object.keys(size)) {
		total[key] -= size[key];
	}
};

/**
 * @param {Iterable<Node>} nodes some nodes
 * @returns {Record<string, number>} total size
 */
const sumSize = nodes => {
	const sum = Object.create(null);
	for (const node of nodes) {
		addSizeTo(sum, node.size);
	}
	return sum;
};

const isTooBig = (size, maxSize) => {
	for (const key of Object.keys(size)) {
		const s = size[key];
		if (s === 0) continue;
		const maxSizeValue = maxSize[key];
		if (typeof maxSizeValue === "number") {
			if (s > maxSizeValue) return true;
		}
	}
	return false;
};

const isTooSmall = (size, minSize) => {
	for (const key of Object.keys(size)) {
		const s = size[key];
		if (s === 0) continue;
		const minSizeValue = minSize[key];
		if (typeof minSizeValue === "number") {
			if (s < minSizeValue) return true;
		}
	}
	return false;
};

const getTooSmallTypes = (size, minSize) => {
	const types = new Set();
	for (const key of Object.keys(size)) {
		const s = size[key];
		if (s === 0) continue;
		const minSizeValue = minSize[key];
		if (typeof minSizeValue === "number") {
			if (s < minSizeValue) types.add(key);
		}
	}
	return types;
};

const getNumberOfMatchingSizeTypes = (size, types) => {
	let i = 0;
	for (const key of Object.keys(size)) {
		if (size[key] !== 0 && types.has(key)) i++;
	}
	return i;
};

const selectiveSizeSum = (size, types) => {
	let sum = 0;
	for (const key of Object.keys(size)) {
		if (size[key] !== 0 && types.has(key)) sum += size[key];
	}
	return sum;
};

/**
 * @template T
 */
class Node {
	/**
	 * @param {T} item item
	 * @param {string} key key
	 * @param {Record<string, number>} size size
	 */
	constructor(item, key, size) {
		this.item = item;
		this.key = key;
		this.size = size;
	}
}

/**
 * @template T
 */
class Group {
	/**
	 * @param {Node<T>[]} nodes nodes
	 * @param {number[]} similarities similarities between the nodes (length = nodes.length - 1)
	 * @param {Record<string, number>=} size size of the group
	 */
	constructor(nodes, similarities, size) {
		this.nodes = nodes;
		this.similarities = similarities;
		this.size = size || sumSize(nodes);
		/** @type {string} */
		this.key = undefined;
	}

	/**
	 * @param {function(Node): boolean} filter filter function
	 * @returns {Node[]} removed nodes
	 */
	popNodes(filter) {
		const newNodes = [];
		const newSimilarities = [];
		const resultNodes = [];
		let lastNode;
		for (let i = 0; i < this.nodes.length; i++) {
			const node = this.nodes[i];
			if (filter(node)) {
				resultNodes.push(node);
			} else {
				if (newNodes.length > 0) {
					newSimilarities.push(
						lastNode === this.nodes[i - 1]
							? this.similarities[i - 1]
							: similarity(lastNode.key, node.key)
					);
				}
				newNodes.push(node);
				lastNode = node;
			}
		}
		if (resultNodes.length === this.nodes.length) return undefined;
		this.nodes = newNodes;
		this.similarities = newSimilarities;
		this.size = sumSize(newNodes);
		return resultNodes;
	}
}

/**
 * @param {Iterable<Node>} nodes nodes
 * @returns {number[]} similarities
 */
const getSimilarities = nodes => {
	// calculate similarities between lexically adjacent nodes
	/** @type {number[]} */
	const similarities = [];
	let last = undefined;
	for (const node of nodes) {
		if (last !== undefined) {
			similarities.push(similarity(last.key, node.key));
		}
		last = node;
	}
	return similarities;
};

/**
 * @template T
 * @typedef {Object} GroupedItems<T>
 * @property {string} key
 * @property {T[]} items
 * @property {Record<string, number>} size
 */

/**
 * @template T
 * @typedef {Object} Options
 * @property {Record<string, number>} maxSize maximum size of a group
 * @property {Record<string, number>} minSize minimum size of a group (preferred over maximum size)
 * @property {Iterable<T>} items a list of items
 * @property {function(T): Record<string, number>} getSize function to get size of an item
 * @property {function(T): string} getKey function to get the key of an item
 */

/**
 * @template T
 * @param {Options<T>} options options object
 * @returns {GroupedItems<T>[]} grouped items
 */
module.exports = ({ maxSize, minSize, items, getSize, getKey }) => {
	/** @type {Group<T>[]} */
	const result = [];

	const nodes = Array.from(
		items,
		item => new Node(item, getKey(item), getSize(item))
	);

	/** @type {Node<T>[]} */
	const initialNodes = [];

	// lexically ordering of keys
	nodes.sort((a, b) => {
		if (a.key < b.key) return -1;
		if (a.key > b.key) return 1;
		return 0;
	});

	// return nodes bigger than maxSize directly as group
	// But make sure that minSize is not violated
	for (const node of nodes) {
		if (isTooBig(node.size, maxSize) && !isTooSmall(node.size, minSize)) {
			result.push(new Group([node], []));
		} else {
			initialNodes.push(node);
		}
	}

	if (initialNodes.length > 0) {
		const initialGroup = new Group(initialNodes, getSimilarities(initialNodes));

		const removeProblematicNodes = (group, consideredSize = group.size) => {
			const problemTypes = getTooSmallTypes(consideredSize, minSize);
			if (problemTypes.size > 0) {
				// We hit an edge case where the working set is already smaller than minSize
				// We merge problematic nodes with the smallest result node to keep minSize intact
				const problemNodes = group.popNodes(
					n => getNumberOfMatchingSizeTypes(n.size, problemTypes) > 0
				);
				if (problemNodes === undefined) return false;
				// Only merge it with result nodes that have the problematic size type
				const possibleResultGroups = result.filter(
					n => getNumberOfMatchingSizeTypes(n.size, problemTypes) > 0
				);
				if (possibleResultGroups.length > 0) {
					const bestGroup = possibleResultGroups.reduce((min, group) => {
						const minMatches = getNumberOfMatchingSizeTypes(min, problemTypes);
						const groupMatches = getNumberOfMatchingSizeTypes(
							group,
							problemTypes
						);
						if (minMatches !== groupMatches)
							return minMatches < groupMatches ? group : min;
						if (
							selectiveSizeSum(min.size, problemTypes) >
							selectiveSizeSum(group.size, problemTypes)
						)
							return group;
						return min;
					});
					for (const node of problemNodes) bestGroup.nodes.push(node);
					bestGroup.nodes.sort((a, b) => {
						if (a.key < b.key) return -1;
						if (a.key > b.key) return 1;
						return 0;
					});
				} else {
					// There are no other nodes with the same size types
					// We create a new group and have to accept that it's smaller than minSize
					result.push(new Group(problemNodes, null));
				}
				return true;
			} else {
				return false;
			}
		};

		if (initialGroup.nodes.length > 0) {
			const queue = [initialGroup];

			while (queue.length) {
				const group = queue.pop();
				// only groups bigger than maxSize need to be splitted
				if (!isTooBig(group.size, maxSize)) {
					result.push(group);
					continue;
				}
				// If the group is already too small
				// we try to work only with the unproblematic nodes
				if (removeProblematicNodes(group)) {
					// This changed something, so we try this group again
					queue.push(group);
					continue;
				}

				// find unsplittable area from left and right
				// going minSize from left and right
				// at least one node need to be included otherwise we get stuck
				let left = 1;
				let leftSize = Object.create(null);
				addSizeTo(leftSize, group.nodes[0].size);
				while (left < group.nodes.length && isTooSmall(leftSize, minSize)) {
					addSizeTo(leftSize, group.nodes[left].size);
					left++;
				}
				let right = group.nodes.length - 2;
				let rightSize = Object.create(null);
				addSizeTo(rightSize, group.nodes[group.nodes.length - 1].size);
				while (right >= 0 && isTooSmall(rightSize, minSize)) {
					addSizeTo(rightSize, group.nodes[right].size);
					right--;
				}

				//      left v   v right
				// [ O O O ] O O O [ O O O ]
				// ^^^^^^^^^ leftSize
				//       rightSize ^^^^^^^^^
				// leftSize > minSize
				// rightSize > minSize

				// Perfect split: [ O O O ] [ O O O ]
				//                right === left - 1

				if (left - 1 > right) {
					// We try to remove some problematic nodes to "fix" that
					let prevSize;
					if (right < group.nodes.length - left) {
						subtractSizeFrom(rightSize, group.nodes[right + 1].size);
						prevSize = rightSize;
					} else {
						subtractSizeFrom(leftSize, group.nodes[left - 1].size);
						prevSize = leftSize;
					}
					if (removeProblematicNodes(group, prevSize)) {
						// This changed something, so we try this group again
						queue.push(group);
						continue;
					}
					// can't split group while holding minSize
					// because minSize is preferred of maxSize we return
					// the problematic nodes as result here even while it's too big
					// To avoid this make sure maxSize > minSize * 3
					result.push(group);
					continue;
				}
				if (left <= right) {
					// when there is a area between left and right
					// we look for best split point
					// we split at the minimum similarity
					// here key space is separated the most
					// But we also need to make sure to not create too small groups
					let best = -1;
					let bestSimilarity = Infinity;
					let pos = left;
					let rightSize = sumSize(group.nodes.slice(pos));

					//       pos v   v right
					// [ O O O ] O O O [ O O O ]
					// ^^^^^^^^^ leftSize
					// rightSize ^^^^^^^^^^^^^^^

					while (pos <= right + 1) {
						const similarity = group.similarities[pos - 1];
						if (
							similarity < bestSimilarity &&
							!isTooSmall(leftSize, minSize) &&
							!isTooSmall(rightSize, minSize)
						) {
							best = pos;
							bestSimilarity = similarity;
						}
						addSizeTo(leftSize, group.nodes[pos].size);
						subtractSizeFrom(rightSize, group.nodes[pos].size);
						pos++;
					}
					if (best < 0) {
						// This can't happen
						// but if that assumption is wrong
						// fallback to a big group
						result.push(group);
						continue;
					}
					left = best;
					right = best - 1;
				}

				// create two new groups for left and right area
				// and queue them up
				const rightNodes = [group.nodes[right + 1]];
				/** @type {number[]} */
				const rightSimilarities = [];
				for (let i = right + 2; i < group.nodes.length; i++) {
					rightSimilarities.push(group.similarities[i - 1]);
					rightNodes.push(group.nodes[i]);
				}
				queue.push(new Group(rightNodes, rightSimilarities));

				const leftNodes = [group.nodes[0]];
				/** @type {number[]} */
				const leftSimilarities = [];
				for (let i = 1; i < left; i++) {
					leftSimilarities.push(group.similarities[i - 1]);
					leftNodes.push(group.nodes[i]);
				}
				queue.push(new Group(leftNodes, leftSimilarities));
			}
		}
	}

	// lexically ordering
	result.sort((a, b) => {
		if (a.nodes[0].key < b.nodes[0].key) return -1;
		if (a.nodes[0].key > b.nodes[0].key) return 1;
		return 0;
	});

	// give every group a name
	const usedNames = new Set();
	for (let i = 0; i < result.length; i++) {
		const group = result[i];
		if (group.nodes.length === 1) {
			group.key = group.nodes[0].key;
		} else {
			const first = group.nodes[0];
			const last = group.nodes[group.nodes.length - 1];
			const name = getName(first.key, last.key, usedNames);
			group.key = name;
		}
	}

	// return the results
	return result.map(group => {
		/** @type {GroupedItems<T>} */
		return {
			key: group.key,
			items: group.nodes.map(node => node.item),
			size: group.size
		};
	});
};