审查视图

simplewind/vendor/phpoffice/phpexcel/Classes/PHPExcel/Shared/trend/exponentialBestFitClass.php 4.2 KB
董瑞恩 authored
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
<?php
/**
 * PHPExcel
 *
 * Copyright (c) 2006 - 2014 PHPExcel
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * @category   PHPExcel
 * @package    PHPExcel_Shared_Trend
 * @copyright  Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
 * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt	LGPL
 * @version    ##VERSION##, ##DATE##
 */


require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');


/**
 * PHPExcel_Exponential_Best_Fit
 *
 * @category   PHPExcel
 * @package    PHPExcel_Shared_Trend
 * @copyright  Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
 */
class PHPExcel_Exponential_Best_Fit extends PHPExcel_Best_Fit
{
	/**
	 * Algorithm type to use for best-fit
	 * (Name of this trend class)
	 *
	 * @var	string
	 **/
	protected $_bestFitType		= 'exponential';


	/**
	 * Return the Y-Value for a specified value of X
	 *
	 * @param	 float		$xValue			X-Value
	 * @return	 float						Y-Value
	 **/
	public function getValueOfYForX($xValue) {
		return $this->getIntersect() * pow($this->getSlope(),($xValue - $this->_Xoffset));
	}	//	function getValueOfYForX()


	/**
	 * Return the X-Value for a specified value of Y
	 *
	 * @param	 float		$yValue			Y-Value
	 * @return	 float						X-Value
	 **/
	public function getValueOfXForY($yValue) {
		return log(($yValue + $this->_Yoffset) / $this->getIntersect()) / log($this->getSlope());
	}	//	function getValueOfXForY()


	/**
	 * Return the Equation of the best-fit line
	 *
	 * @param	 int		$dp		Number of places of decimal precision to display
	 * @return	 string
	 **/
	public function getEquation($dp=0) {
		$slope = $this->getSlope($dp);
		$intersect = $this->getIntersect($dp);

		return 'Y = '.$intersect.' * '.$slope.'^X';
	}	//	function getEquation()


	/**
	 * Return the Slope of the line
	 *
	 * @param	 int		$dp		Number of places of decimal precision to display
	 * @return	 string
	 **/
	public function getSlope($dp=0) {
		if ($dp != 0) {
			return round(exp($this->_slope),$dp);
		}
		return exp($this->_slope);
	}	//	function getSlope()


	/**
	 * Return the Value of X where it intersects Y = 0
	 *
	 * @param	 int		$dp		Number of places of decimal precision to display
	 * @return	 string
	 **/
	public function getIntersect($dp=0) {
		if ($dp != 0) {
			return round(exp($this->_intersect),$dp);
		}
		return exp($this->_intersect);
	}	//	function getIntersect()


	/**
	 * Execute the regression and calculate the goodness of fit for a set of X and Y data values
	 *
	 * @param	 float[]	$yValues	The set of Y-values for this regression
	 * @param	 float[]	$xValues	The set of X-values for this regression
	 * @param	 boolean	$const
	 */
	private function _exponential_regression($yValues, $xValues, $const) {
		foreach($yValues as &$value) {
			if ($value < 0.0) {
				$value = 0 - log(abs($value));
			} elseif ($value > 0.0) {
				$value = log($value);
			}
		}
		unset($value);

		$this->_leastSquareFit($yValues, $xValues, $const);
	}	//	function _exponential_regression()


	/**
	 * Define the regression and calculate the goodness of fit for a set of X and Y data values
	 *
	 * @param	float[]		$yValues	The set of Y-values for this regression
	 * @param	float[]		$xValues	The set of X-values for this regression
	 * @param	boolean		$const
	 */
	function __construct($yValues, $xValues=array(), $const=True) {
		if (parent::__construct($yValues, $xValues) !== False) {
			$this->_exponential_regression($yValues, $xValues, $const);
		}
	}	//	function __construct()

}	//	class exponentialBestFit