QRDecomposition.php 6.8 KB
<?php

namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;

use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;

/**
 *    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
 *    orthogonal matrix Q and an n-by-n upper triangular matrix R so that
 *    A = Q*R.
 *
 *    The QR decompostion always exists, even if the matrix does not have
 *    full rank, so the constructor will never fail.  The primary use of the
 *    QR decomposition is in the least squares solution of nonsquare systems
 *    of simultaneous linear equations.  This will fail if isFullRank()
 *    returns false.
 *
 * @author  Paul Meagher
 *
 * @version 1.1
 */
class QRDecomposition
{
    const MATRIX_RANK_EXCEPTION = 'Can only perform operation on full-rank matrix.';

    /**
     * Array for internal storage of decomposition.
     *
     * @var array
     */
    private $QR = [];

    /**
     * Row dimension.
     *
     * @var int
     */
    private $m;

    /**
     * Column dimension.
     *
     * @var int
     */
    private $n;

    /**
     * Array for internal storage of diagonal of R.
     *
     * @var array
     */
    private $Rdiag = [];

    /**
     * QR Decomposition computed by Householder reflections.
     *
     * @param Matrix $A Rectangular matrix
     */
    public function __construct(Matrix $A)
    {
        // Initialize.
        $this->QR = $A->getArray();
        $this->m = $A->getRowDimension();
        $this->n = $A->getColumnDimension();
        // Main loop.
        for ($k = 0; $k < $this->n; ++$k) {
            // Compute 2-norm of k-th column without under/overflow.
            $nrm = 0.0;
            for ($i = $k; $i < $this->m; ++$i) {
                $nrm = hypo($nrm, $this->QR[$i][$k]);
            }
            if ($nrm != 0.0) {
                // Form k-th Householder vector.
                if ($this->QR[$k][$k] < 0) {
                    $nrm = -$nrm;
                }
                for ($i = $k; $i < $this->m; ++$i) {
                    $this->QR[$i][$k] /= $nrm;
                }
                $this->QR[$k][$k] += 1.0;
                // Apply transformation to remaining columns.
                for ($j = $k + 1; $j < $this->n; ++$j) {
                    $s = 0.0;
                    for ($i = $k; $i < $this->m; ++$i) {
                        $s += $this->QR[$i][$k] * $this->QR[$i][$j];
                    }
                    $s = -$s / $this->QR[$k][$k];
                    for ($i = $k; $i < $this->m; ++$i) {
                        $this->QR[$i][$j] += $s * $this->QR[$i][$k];
                    }
                }
            }
            $this->Rdiag[$k] = -$nrm;
        }
    }

    //    function __construct()

    /**
     *    Is the matrix full rank?
     *
     * @return bool true if R, and hence A, has full rank, else false
     */
    public function isFullRank()
    {
        for ($j = 0; $j < $this->n; ++$j) {
            if ($this->Rdiag[$j] == 0) {
                return false;
            }
        }

        return true;
    }

    //    function isFullRank()

    /**
     * Return the Householder vectors.
     *
     * @return Matrix Lower trapezoidal matrix whose columns define the reflections
     */
    public function getH()
    {
        $H = [];
        for ($i = 0; $i < $this->m; ++$i) {
            for ($j = 0; $j < $this->n; ++$j) {
                if ($i >= $j) {
                    $H[$i][$j] = $this->QR[$i][$j];
                } else {
                    $H[$i][$j] = 0.0;
                }
            }
        }

        return new Matrix($H);
    }

    //    function getH()

    /**
     * Return the upper triangular factor.
     *
     * @return Matrix upper triangular factor
     */
    public function getR()
    {
        $R = [];
        for ($i = 0; $i < $this->n; ++$i) {
            for ($j = 0; $j < $this->n; ++$j) {
                if ($i < $j) {
                    $R[$i][$j] = $this->QR[$i][$j];
                } elseif ($i == $j) {
                    $R[$i][$j] = $this->Rdiag[$i];
                } else {
                    $R[$i][$j] = 0.0;
                }
            }
        }

        return new Matrix($R);
    }

    //    function getR()

    /**
     * Generate and return the (economy-sized) orthogonal factor.
     *
     * @return Matrix orthogonal factor
     */
    public function getQ()
    {
        $Q = [];
        for ($k = $this->n - 1; $k >= 0; --$k) {
            for ($i = 0; $i < $this->m; ++$i) {
                $Q[$i][$k] = 0.0;
            }
            $Q[$k][$k] = 1.0;
            for ($j = $k; $j < $this->n; ++$j) {
                if ($this->QR[$k][$k] != 0) {
                    $s = 0.0;
                    for ($i = $k; $i < $this->m; ++$i) {
                        $s += $this->QR[$i][$k] * $Q[$i][$j];
                    }
                    $s = -$s / $this->QR[$k][$k];
                    for ($i = $k; $i < $this->m; ++$i) {
                        $Q[$i][$j] += $s * $this->QR[$i][$k];
                    }
                }
            }
        }

        return new Matrix($Q);
    }

    //    function getQ()

    /**
     * Least squares solution of A*X = B.
     *
     * @param Matrix $B a Matrix with as many rows as A and any number of columns
     *
     * @return Matrix matrix that minimizes the two norm of Q*R*X-B
     */
    public function solve(Matrix $B)
    {
        if ($B->getRowDimension() == $this->m) {
            if ($this->isFullRank()) {
                // Copy right hand side
                $nx = $B->getColumnDimension();
                $X = $B->getArray();
                // Compute Y = transpose(Q)*B
                for ($k = 0; $k < $this->n; ++$k) {
                    for ($j = 0; $j < $nx; ++$j) {
                        $s = 0.0;
                        for ($i = $k; $i < $this->m; ++$i) {
                            $s += $this->QR[$i][$k] * $X[$i][$j];
                        }
                        $s = -$s / $this->QR[$k][$k];
                        for ($i = $k; $i < $this->m; ++$i) {
                            $X[$i][$j] += $s * $this->QR[$i][$k];
                        }
                    }
                }
                // Solve R*X = Y;
                for ($k = $this->n - 1; $k >= 0; --$k) {
                    for ($j = 0; $j < $nx; ++$j) {
                        $X[$k][$j] /= $this->Rdiag[$k];
                    }
                    for ($i = 0; $i < $k; ++$i) {
                        for ($j = 0; $j < $nx; ++$j) {
                            $X[$i][$j] -= $X[$k][$j] * $this->QR[$i][$k];
                        }
                    }
                }
                $X = new Matrix($X);

                return $X->getMatrix(0, $this->n - 1, 0, $nx);
            }

            throw new CalculationException(self::MATRIX_RANK_EXCEPTION);
        }

        throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
    }
}