Trends.php 13.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
<?php

namespace PhpOffice\PhpSpreadsheet\Calculation\Statistical;

use PhpOffice\PhpSpreadsheet\Calculation\Exception;
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;

class Trends
{
    private static function filterTrendValues(array &$array1, array &$array2): void
    {
        foreach ($array1 as $key => $value) {
            if ((is_bool($value)) || (is_string($value)) || ($value === null)) {
                unset($array1[$key], $array2[$key]);
            }
        }
    }

    private static function checkTrendArrays(&$array1, &$array2): void
    {
        if (!is_array($array1)) {
            $array1 = [$array1];
        }
        if (!is_array($array2)) {
            $array2 = [$array2];
        }

        $array1 = Functions::flattenArray($array1);
        $array2 = Functions::flattenArray($array2);

        self::filterTrendValues($array1, $array2);
        self::filterTrendValues($array2, $array1);

        // Reset the array indexes
        $array1 = array_merge($array1);
        $array2 = array_merge($array2);
    }

    protected static function validateTrendArrays(array $yValues, array $xValues): void
    {
        $yValueCount = count($yValues);
        $xValueCount = count($xValues);

        if (($yValueCount === 0) || ($yValueCount !== $xValueCount)) {
            throw new Exception(Functions::NA());
        } elseif ($yValueCount === 1) {
            throw new Exception(Functions::DIV0());
        }
    }

    /**
     * CORREL.
     *
     * Returns covariance, the average of the products of deviations for each data point pair.
     *
     * @param mixed $yValues array of mixed Data Series Y
     * @param null|mixed $xValues array of mixed Data Series X
     *
     * @return float|string
     */
    public static function CORREL($yValues, $xValues = null)
    {
        if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) {
            return Functions::VALUE();
        }

        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);

        return $bestFitLinear->getCorrelation();
    }

    /**
     * COVAR.
     *
     * Returns covariance, the average of the products of deviations for each data point pair.
     *
     * @param mixed $yValues array of mixed Data Series Y
     * @param mixed $xValues array of mixed Data Series X
     *
     * @return float|string
     */
    public static function COVAR($yValues, $xValues)
    {
        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);

        return $bestFitLinear->getCovariance();
    }

    /**
     * FORECAST.
     *
     * Calculates, or predicts, a future value by using existing values.
     * The predicted value is a y-value for a given x-value.
     *
     * @param mixed $xValue Float value of X for which we want to find Y
     * @param mixed $yValues array of mixed Data Series Y
     * @param mixed $xValues of mixed Data Series X
     *
     * @return bool|float|string
     */
    public static function FORECAST($xValue, $yValues, $xValues)
    {
        $xValue = Functions::flattenSingleValue($xValue);

        try {
            $xValue = StatisticalValidations::validateFloat($xValue);
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);

        return $bestFitLinear->getValueOfYForX($xValue);
    }

    /**
     * GROWTH.
     *
     * Returns values along a predicted exponential Trend
     *
     * @param mixed[] $yValues Data Series Y
     * @param mixed[] $xValues Data Series X
     * @param mixed[] $newValues Values of X for which we want to find Y
     * @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
     *
     * @return float[]
     */
    public static function GROWTH($yValues, $xValues = [], $newValues = [], $const = true)
    {
        $yValues = Functions::flattenArray($yValues);
        $xValues = Functions::flattenArray($xValues);
        $newValues = Functions::flattenArray($newValues);
        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);

        $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
        if (empty($newValues)) {
            $newValues = $bestFitExponential->getXValues();
        }

        $returnArray = [];
        foreach ($newValues as $xValue) {
            $returnArray[0][] = [$bestFitExponential->getValueOfYForX($xValue)];
        }

        return $returnArray;
    }

    /**
     * INTERCEPT.
     *
     * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
     *
     * @param mixed[] $yValues Data Series Y
     * @param mixed[] $xValues Data Series X
     *
     * @return float|string
     */
    public static function INTERCEPT($yValues, $xValues)
    {
        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);

        return $bestFitLinear->getIntersect();
    }

    /**
     * LINEST.
     *
     * Calculates the statistics for a line by using the "least squares" method to calculate a straight line
     *     that best fits your data, and then returns an array that describes the line.
     *
     * @param mixed[] $yValues Data Series Y
     * @param null|mixed[] $xValues Data Series X
     * @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
     * @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics
     *
     * @return array|int|string The result, or a string containing an error
     */
    public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)
    {
        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
        $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
        if ($xValues === null) {
            $xValues = $yValues;
        }

        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);

        if ($stats === true) {
            return [
                [
                    $bestFitLinear->getSlope(),
                    $bestFitLinear->getIntersect(),
                ],
                [
                    $bestFitLinear->getSlopeSE(),
                    ($const === false) ? Functions::NA() : $bestFitLinear->getIntersectSE(),
                ],
                [
                    $bestFitLinear->getGoodnessOfFit(),
                    $bestFitLinear->getStdevOfResiduals(),
                ],
                [
                    $bestFitLinear->getF(),
                    $bestFitLinear->getDFResiduals(),
                ],
                [
                    $bestFitLinear->getSSRegression(),
                    $bestFitLinear->getSSResiduals(),
                ],
            ];
        }

        return [
            $bestFitLinear->getSlope(),
            $bestFitLinear->getIntersect(),
        ];
    }

    /**
     * LOGEST.
     *
     * Calculates an exponential curve that best fits the X and Y data series,
     *        and then returns an array that describes the line.
     *
     * @param mixed[] $yValues Data Series Y
     * @param null|mixed[] $xValues Data Series X
     * @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
     * @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics
     *
     * @return array|int|string The result, or a string containing an error
     */
    public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)
    {
        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
        $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
        if ($xValues === null) {
            $xValues = $yValues;
        }

        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        foreach ($yValues as $value) {
            if ($value < 0.0) {
                return Functions::NAN();
            }
        }

        $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);

        if ($stats === true) {
            return [
                [
                    $bestFitExponential->getSlope(),
                    $bestFitExponential->getIntersect(),
                ],
                [
                    $bestFitExponential->getSlopeSE(),
                    ($const === false) ? Functions::NA() : $bestFitExponential->getIntersectSE(),
                ],
                [
                    $bestFitExponential->getGoodnessOfFit(),
                    $bestFitExponential->getStdevOfResiduals(),
                ],
                [
                    $bestFitExponential->getF(),
                    $bestFitExponential->getDFResiduals(),
                ],
                [
                    $bestFitExponential->getSSRegression(),
                    $bestFitExponential->getSSResiduals(),
                ],
            ];
        }

        return [
            $bestFitExponential->getSlope(),
            $bestFitExponential->getIntersect(),
        ];
    }

    /**
     * RSQ.
     *
     * Returns the square of the Pearson product moment correlation coefficient through data points
     *     in known_y's and known_x's.
     *
     * @param mixed[] $yValues Data Series Y
     * @param mixed[] $xValues Data Series X
     *
     * @return float|string The result, or a string containing an error
     */
    public static function RSQ($yValues, $xValues)
    {
        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);

        return $bestFitLinear->getGoodnessOfFit();
    }

    /**
     * SLOPE.
     *
     * Returns the slope of the linear regression line through data points in known_y's and known_x's.
     *
     * @param mixed[] $yValues Data Series Y
     * @param mixed[] $xValues Data Series X
     *
     * @return float|string The result, or a string containing an error
     */
    public static function SLOPE($yValues, $xValues)
    {
        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);

        return $bestFitLinear->getSlope();
    }

    /**
     * STEYX.
     *
     * Returns the standard error of the predicted y-value for each x in the regression.
     *
     * @param mixed[] $yValues Data Series Y
     * @param mixed[] $xValues Data Series X
     *
     * @return float|string
     */
    public static function STEYX($yValues, $xValues)
    {
        try {
            self::checkTrendArrays($yValues, $xValues);
            self::validateTrendArrays($yValues, $xValues);
        } catch (Exception $e) {
            return $e->getMessage();
        }

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);

        return $bestFitLinear->getStdevOfResiduals();
    }

    /**
     * TREND.
     *
     * Returns values along a linear Trend
     *
     * @param mixed[] $yValues Data Series Y
     * @param mixed[] $xValues Data Series X
     * @param mixed[] $newValues Values of X for which we want to find Y
     * @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
     *
     * @return float[]
     */
    public static function TREND($yValues, $xValues = [], $newValues = [], $const = true)
    {
        $yValues = Functions::flattenArray($yValues);
        $xValues = Functions::flattenArray($xValues);
        $newValues = Functions::flattenArray($newValues);
        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);

        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
        if (empty($newValues)) {
            $newValues = $bestFitLinear->getXValues();
        }

        $returnArray = [];
        foreach ($newValues as $xValue) {
            $returnArray[0][] = [$bestFitLinear->getValueOfYForX($xValue)];
        }

        return $returnArray;
    }
}