Erf.php
2.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<?php
namespace PhpOffice\PhpSpreadsheet\Calculation\Engineering;
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
class Erf
{
private static $twoSqrtPi = 1.128379167095512574;
/**
* ERF.
*
* Returns the error function integrated between the lower and upper bound arguments.
*
* Note: In Excel 2007 or earlier, if you input a negative value for the upper or lower bound arguments,
* the function would return a #NUM! error. However, in Excel 2010, the function algorithm was
* improved, so that it can now calculate the function for both positive and negative ranges.
* PhpSpreadsheet follows Excel 2010 behaviour, and accepts negative arguments.
*
* Excel Function:
* ERF(lower[,upper])
*
* @param mixed $lower Lower bound float for integrating ERF
* @param mixed $upper Upper bound float for integrating ERF.
* If omitted, ERF integrates between zero and lower_limit
*
* @return float|string
*/
public static function ERF($lower, $upper = null)
{
$lower = Functions::flattenSingleValue($lower);
$upper = Functions::flattenSingleValue($upper);
if (is_numeric($lower)) {
if ($upper === null) {
return self::erfValue($lower);
}
if (is_numeric($upper)) {
return self::erfValue($upper) - self::erfValue($lower);
}
}
return Functions::VALUE();
}
/**
* ERFPRECISE.
*
* Returns the error function integrated between the lower and upper bound arguments.
*
* Excel Function:
* ERF.PRECISE(limit)
*
* @param mixed $limit Float bound for integrating ERF, other bound is zero
*
* @return float|string
*/
public static function ERFPRECISE($limit)
{
$limit = Functions::flattenSingleValue($limit);
return self::ERF($limit);
}
//
// Private method to calculate the erf value
//
public static function erfValue($value)
{
if (abs($value) > 2.2) {
return 1 - ErfC::ERFC($value);
}
$sum = $term = $value;
$xsqr = ($value * $value);
$j = 1;
do {
$term *= $xsqr / $j;
$sum -= $term / (2 * $j + 1);
++$j;
$term *= $xsqr / $j;
$sum += $term / (2 * $j + 1);
++$j;
if ($sum == 0.0) {
break;
}
} while (abs($term / $sum) > Functions::PRECISION);
return self::$twoSqrtPi * $sum;
}
}