BesselJ.php
5.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
<?php
namespace PhpOffice\PhpSpreadsheet\Calculation\Engineering;
use PhpOffice\PhpSpreadsheet\Calculation\Exception;
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
class BesselJ
{
/**
* BESSELJ.
*
* Returns the Bessel function
*
* Excel Function:
* BESSELJ(x,ord)
*
* NOTE: The MS Excel implementation of the BESSELJ function is still not accurate, particularly for higher order
* values with x < -8 and x > 8. This code provides a more accurate calculation
*
* @param mixed $x A float value at which to evaluate the function.
* If x is nonnumeric, BESSELJ returns the #VALUE! error value.
* @param mixed $ord The integer order of the Bessel function.
* If ord is not an integer, it is truncated.
* If $ord is nonnumeric, BESSELJ returns the #VALUE! error value.
* If $ord < 0, BESSELJ returns the #NUM! error value.
*
* @return float|string Result, or a string containing an error
*/
public static function BESSELJ($x, $ord)
{
$x = Functions::flattenSingleValue($x);
$ord = Functions::flattenSingleValue($ord);
try {
$x = EngineeringValidations::validateFloat($x);
$ord = EngineeringValidations::validateInt($ord);
} catch (Exception $e) {
return $e->getMessage();
}
if ($ord < 0) {
return Functions::NAN();
}
$fResult = self::calculate($x, $ord);
return (is_nan($fResult)) ? Functions::NAN() : $fResult;
}
private static function calculate(float $x, int $ord): float
{
// special cases
switch ($ord) {
case 0:
return self::besselJ0($x);
case 1:
return self::besselJ1($x);
}
return self::besselJ2($x, $ord);
}
private static function besselJ0(float $x): float
{
$ax = abs($x);
if ($ax < 8.0) {
$y = $x * $x;
$ans1 = 57568490574.0 + $y * (-13362590354.0 + $y * (651619640.7 + $y * (-11214424.18 + $y *
(77392.33017 + $y * (-184.9052456)))));
$ans2 = 57568490411.0 + $y * (1029532985.0 + $y * (9494680.718 + $y * (59272.64853 + $y *
(267.8532712 + $y * 1.0))));
return $ans1 / $ans2;
}
$z = 8.0 / $ax;
$y = $z * $z;
$xx = $ax - 0.785398164;
$ans1 = 1.0 + $y * (-0.1098628627e-2 + $y * (0.2734510407e-4 + $y * (-0.2073370639e-5 + $y * 0.2093887211e-6)));
$ans2 = -0.1562499995e-1 + $y * (0.1430488765e-3 + $y * (-0.6911147651e-5 + $y *
(0.7621095161e-6 - $y * 0.934935152e-7)));
return sqrt(0.636619772 / $ax) * (cos($xx) * $ans1 - $z * sin($xx) * $ans2);
}
private static function besselJ1(float $x): float
{
$ax = abs($x);
if ($ax < 8.0) {
$y = $x * $x;
$ans1 = $x * (72362614232.0 + $y * (-7895059235.0 + $y * (242396853.1 + $y *
(-2972611.439 + $y * (15704.48260 + $y * (-30.16036606))))));
$ans2 = 144725228442.0 + $y * (2300535178.0 + $y * (18583304.74 + $y * (99447.43394 + $y *
(376.9991397 + $y * 1.0))));
return $ans1 / $ans2;
}
$z = 8.0 / $ax;
$y = $z * $z;
$xx = $ax - 2.356194491;
$ans1 = 1.0 + $y * (0.183105e-2 + $y * (-0.3516396496e-4 + $y * (0.2457520174e-5 + $y * (-0.240337019e-6))));
$ans2 = 0.04687499995 + $y * (-0.2002690873e-3 + $y * (0.8449199096e-5 + $y *
(-0.88228987e-6 + $y * 0.105787412e-6)));
$ans = sqrt(0.636619772 / $ax) * (cos($xx) * $ans1 - $z * sin($xx) * $ans2);
return ($x < 0.0) ? -$ans : $ans;
}
private static function besselJ2(float $x, int $ord): float
{
$ax = abs($x);
if ($ax === 0.0) {
return 0.0;
}
if ($ax > $ord) {
return self::besselj2a($ax, $ord, $x);
}
return self::besselj2b($ax, $ord, $x);
}
private static function besselj2a(float $ax, int $ord, float $x)
{
$tox = 2.0 / $ax;
$bjm = self::besselJ0($ax);
$bj = self::besselJ1($ax);
for ($j = 1; $j < $ord; ++$j) {
$bjp = $j * $tox * $bj - $bjm;
$bjm = $bj;
$bj = $bjp;
}
$ans = $bj;
return ($x < 0.0 && ($ord % 2) == 1) ? -$ans : $ans;
}
private static function besselj2b(float $ax, int $ord, float $x)
{
$tox = 2.0 / $ax;
$jsum = false;
$bjp = $ans = $sum = 0.0;
$bj = 1.0;
for ($j = 2 * ($ord + (int) sqrt(40.0 * $ord)); $j > 0; --$j) {
$bjm = $j * $tox * $bj - $bjp;
$bjp = $bj;
$bj = $bjm;
if (abs($bj) > 1.0e+10) {
$bj *= 1.0e-10;
$bjp *= 1.0e-10;
$ans *= 1.0e-10;
$sum *= 1.0e-10;
}
if ($jsum === true) {
$sum += $bj;
}
$jsum = !$jsum;
if ($j === $ord) {
$ans = $bjp;
}
}
$sum = 2.0 * $sum - $bj;
$ans /= $sum;
return ($x < 0.0 && ($ord % 2) === 1) ? -$ans : $ans;
}
}