Functions.php
29.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
<?php
namespace Complex;
use InvalidArgumentException;
class Functions
{
/**
* Returns the absolute value (modulus) of a complex number.
* Also known as the rho of the complex number, i.e. the distance/radius
* from the centrepoint to the representation of the number in polar coordinates.
*
* This function is a synonym for rho()
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The absolute (or rho) value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*
* @see rho
*
*/
public static function abs($complex): float
{
return self::rho($complex);
}
/**
* Returns the inverse cosine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse cosine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function acos($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
$invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
$adjust = new Complex(
$complex->getReal() - $invsqrt->getImaginary(),
$complex->getImaginary() + $invsqrt->getReal()
);
$log = self::ln($adjust);
return new Complex(
$log->getImaginary(),
-1 * $log->getReal()
);
}
/**
* Returns the inverse hyperbolic cosine of a complex number.
*
* Formula from Wolfram Alpha:
* cosh^(-1)z = ln(z + sqrt(z + 1) sqrt(z - 1)).
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic cosine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function acosh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal() && ($complex->getReal() > 1)) {
return new Complex(\acosh($complex->getReal()));
}
$acosh = self::ln(
Operations::add(
$complex,
Operations::multiply(
self::sqrt(Operations::add($complex, 1)),
self::sqrt(Operations::subtract($complex, 1))
)
)
);
return $acosh;
}
/**
* Returns the inverse cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acot($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::atan(self::inverse($complex));
}
/**
* Returns the inverse hyperbolic cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acoth($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::atanh(self::inverse($complex));
}
/**
* Returns the inverse cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acsc($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::asin(self::inverse($complex));
}
/**
* Returns the inverse hyperbolic cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acsch($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::asinh(self::inverse($complex));
}
/**
* Returns the argument of a complex number.
* Also known as the theta of the complex number, i.e. the angle in radians
* from the real axis to the representation of the number in polar coordinates.
*
* This function is a synonym for theta()
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The argument (or theta) value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*
* @see theta
*/
public static function argument($complex): float
{
return self::theta($complex);
}
/**
* Returns the inverse secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function asec($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::acos(self::inverse($complex));
}
/**
* Returns the inverse hyperbolic secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function asech($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::acosh(self::inverse($complex));
}
/**
* Returns the inverse sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function asin($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
$invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
$adjust = new Complex(
$invsqrt->getReal() - $complex->getImaginary(),
$invsqrt->getImaginary() + $complex->getReal()
);
$log = self::ln($adjust);
return new Complex(
$log->getImaginary(),
-1 * $log->getReal()
);
}
/**
* Returns the inverse hyperbolic sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function asinh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal() && ($complex->getReal() > 1)) {
return new Complex(\asinh($complex->getReal()));
}
$asinh = clone $complex;
$asinh = $asinh->reverse()
->invertReal();
$asinh = self::asin($asinh);
return $asinh->reverse()
->invertImaginary();
}
/**
* Returns the inverse tangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse tangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function atan($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\atan($complex->getReal()));
}
$t1Value = new Complex(-1 * $complex->getImaginary(), $complex->getReal());
$uValue = new Complex(1, 0);
$d1Value = clone $uValue;
$d1Value = Operations::subtract($d1Value, $t1Value);
$d2Value = Operations::add($t1Value, $uValue);
$uResult = $d1Value->divideBy($d2Value);
$uResult = self::ln($uResult);
$realMultiplier = -0.5;
$imaginaryMultiplier = 0.5;
if (abs($uResult->getImaginary()) === M_PI) {
// If we have an imaginary value at the max or min (PI or -PI), then we need to ensure
// that the primary is assigned for the correct quadrant.
$realMultiplier = (
($uResult->getImaginary() === M_PI && $uResult->getReal() > 0.0) ||
($uResult->getImaginary() === -M_PI && $uResult->getReal() < 0.0)
) ? 0.5 : -0.5;
}
return new Complex(
$uResult->getImaginary() * $realMultiplier,
$uResult->getReal() * $imaginaryMultiplier,
$complex->getSuffix()
);
}
/**
* Returns the inverse hyperbolic tangent of a complex number.
*
* Formula from Wolfram Alpha:
* tanh^(-1)z = 1/2 [ln(1 + z) - ln(1 - z)].
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic tangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function atanh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
$real = $complex->getReal();
if ($real >= -1.0 && $real <= 1.0) {
return new Complex(\atanh($real));
} else {
return new Complex(\atanh(1 / $real), (($real < 0.0) ? M_PI_2 : -1 * M_PI_2));
}
}
$atanh = Operations::multiply(
Operations::subtract(
self::ln(Operations::add(1.0, $complex)),
self::ln(Operations::subtract(1.0, $complex))
),
0.5
);
return $atanh;
}
/**
* Returns the complex conjugate of a complex number
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The conjugate of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function conjugate($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return new Complex(
$complex->getReal(),
-1 * $complex->getImaginary(),
$complex->getSuffix()
);
}
/**
* Returns the cosine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The cosine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function cos($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\cos($complex->getReal()));
}
return self::conjugate(
new Complex(
\cos($complex->getReal()) * \cosh($complex->getImaginary()),
\sin($complex->getReal()) * \sinh($complex->getImaginary()),
$complex->getSuffix()
)
);
}
/**
* Returns the hyperbolic cosine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic cosine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function cosh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\cosh($complex->getReal()));
}
return new Complex(
\cosh($complex->getReal()) * \cos($complex->getImaginary()),
\sinh($complex->getReal()) * \sin($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function cot($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::inverse(self::tan($complex));
}
/**
* Returns the hyperbolic cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function coth($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::inverse(self::tanh($complex));
}
/**
* Returns the cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function csc($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::inverse(self::sin($complex));
}
/**
* Returns the hyperbolic cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function csch($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::inverse(self::sinh($complex));
}
/**
* Returns the exponential of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The exponential of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function exp($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && (\abs($complex->getImaginary()) == M_PI)) {
return new Complex(-1.0, 0.0);
}
$rho = \exp($complex->getReal());
return new Complex(
$rho * \cos($complex->getImaginary()),
$rho * \sin($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the inverse of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If function would result in a division by zero
*/
public static function inverse($complex): Complex
{
$complex = clone Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
throw new InvalidArgumentException('Division by zero');
}
return $complex->divideInto(1.0);
}
/**
* Returns the natural logarithm of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The natural logarithm of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If the real and the imaginary parts are both zero
*/
public static function ln($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
throw new InvalidArgumentException();
}
return new Complex(
\log(self::rho($complex)),
self::theta($complex),
$complex->getSuffix()
);
}
/**
* Returns the base-2 logarithm of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The base-2 logarithm of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If the real and the imaginary parts are both zero
*/
public static function log2($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
throw new InvalidArgumentException();
} elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
return new Complex(\log($complex->getReal(), 2), 0.0, $complex->getSuffix());
}
return self::ln($complex)
->multiply(\log(Complex::EULER, 2));
}
/**
* Returns the common logarithm (base 10) of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The common logarithm (base 10) of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If the real and the imaginary parts are both zero
*/
public static function log10($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
throw new InvalidArgumentException();
} elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
return new Complex(\log10($complex->getReal()), 0.0, $complex->getSuffix());
}
return self::ln($complex)
->multiply(\log10(Complex::EULER));
}
/**
* Returns the negative of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The negative value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*
* @see rho
*
*/
public static function negative($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return new Complex(
-1 * $complex->getReal(),
-1 * $complex->getImaginary(),
$complex->getSuffix()
);
}
/**
* Returns a complex number raised to a power.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @param float|integer $power The power to raise this value to
* @return Complex The complex argument raised to the real power.
* @throws Exception If the power argument isn't a valid real
*/
public static function pow($complex, $power): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (!is_numeric($power)) {
throw new Exception('Power argument must be a real number');
}
if ($complex->getImaginary() == 0.0 && $complex->getReal() >= 0.0) {
return new Complex(\pow($complex->getReal(), $power));
}
$rValue = \sqrt(($complex->getReal() * $complex->getReal()) + ($complex->getImaginary() * $complex->getImaginary()));
$rPower = \pow($rValue, $power);
$theta = $complex->argument() * $power;
if ($theta == 0) {
return new Complex(1);
}
return new Complex($rPower * \cos($theta), $rPower * \sin($theta), $complex->getSuffix());
}
/**
* Returns the rho of a complex number.
* This is the distance/radius from the centrepoint to the representation of the number in polar coordinates.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The rho value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function rho($complex): float
{
$complex = Complex::validateComplexArgument($complex);
return \sqrt(
($complex->getReal() * $complex->getReal()) +
($complex->getImaginary() * $complex->getImaginary())
);
}
/**
* Returns the secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function sec($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::inverse(self::cos($complex));
}
/**
* Returns the hyperbolic secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function sech($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::inverse(self::cosh($complex));
}
/**
* Returns the sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function sin($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\sin($complex->getReal()));
}
return new Complex(
\sin($complex->getReal()) * \cosh($complex->getImaginary()),
\cos($complex->getReal()) * \sinh($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the hyperbolic sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function sinh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\sinh($complex->getReal()));
}
return new Complex(
\sinh($complex->getReal()) * \cos($complex->getImaginary()),
\cosh($complex->getReal()) * \sin($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the square root of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The Square root of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function sqrt($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
$theta = self::theta($complex);
$delta1 = \cos($theta / 2);
$delta2 = \sin($theta / 2);
$rho = \sqrt(self::rho($complex));
return new Complex($delta1 * $rho, $delta2 * $rho, $complex->getSuffix());
}
/**
* Returns the tangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The tangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If function would result in a division by zero
*/
public static function tan($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\tan($complex->getReal()));
}
$real = $complex->getReal();
$imaginary = $complex->getImaginary();
$divisor = 1 + \pow(\tan($real), 2) * \pow(\tanh($imaginary), 2);
if ($divisor == 0.0) {
throw new InvalidArgumentException('Division by zero');
}
return new Complex(
\pow(self::sech($imaginary)->getReal(), 2) * \tan($real) / $divisor,
\pow(self::sec($real)->getReal(), 2) * \tanh($imaginary) / $divisor,
$complex->getSuffix()
);
}
/**
* Returns the hyperbolic tangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic tangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function tanh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
$real = $complex->getReal();
$imaginary = $complex->getImaginary();
$divisor = \cos($imaginary) * \cos($imaginary) + \sinh($real) * \sinh($real);
if ($divisor == 0.0) {
throw new InvalidArgumentException('Division by zero');
}
return new Complex(
\sinh($real) * \cosh($real) / $divisor,
0.5 * \sin(2 * $imaginary) / $divisor,
$complex->getSuffix()
);
}
/**
* Returns the theta of a complex number.
* This is the angle in radians from the real axis to the representation of the number in polar coordinates.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The theta value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function theta($complex): float
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0) {
if ($complex->isReal()) {
return 0.0;
} elseif ($complex->getImaginary() < 0.0) {
return M_PI / -2;
}
return M_PI / 2;
} elseif ($complex->getReal() > 0.0) {
return \atan($complex->getImaginary() / $complex->getReal());
} elseif ($complex->getImaginary() < 0.0) {
return -(M_PI - \atan(\abs($complex->getImaginary()) / \abs($complex->getReal())));
}
return M_PI - \atan($complex->getImaginary() / \abs($complex->getReal()));
}
}