Trends.php
13.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
<?php
namespace PhpOffice\PhpSpreadsheet\Calculation\Statistical;
use PhpOffice\PhpSpreadsheet\Calculation\Exception;
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;
class Trends
{
private static function filterTrendValues(array &$array1, array &$array2): void
{
foreach ($array1 as $key => $value) {
if ((is_bool($value)) || (is_string($value)) || ($value === null)) {
unset($array1[$key], $array2[$key]);
}
}
}
private static function checkTrendArrays(&$array1, &$array2): void
{
if (!is_array($array1)) {
$array1 = [$array1];
}
if (!is_array($array2)) {
$array2 = [$array2];
}
$array1 = Functions::flattenArray($array1);
$array2 = Functions::flattenArray($array2);
self::filterTrendValues($array1, $array2);
self::filterTrendValues($array2, $array1);
// Reset the array indexes
$array1 = array_merge($array1);
$array2 = array_merge($array2);
}
protected static function validateTrendArrays(array $yValues, array $xValues): void
{
$yValueCount = count($yValues);
$xValueCount = count($xValues);
if (($yValueCount === 0) || ($yValueCount !== $xValueCount)) {
throw new Exception(Functions::NA());
} elseif ($yValueCount === 1) {
throw new Exception(Functions::DIV0());
}
}
/**
* CORREL.
*
* Returns covariance, the average of the products of deviations for each data point pair.
*
* @param mixed $yValues array of mixed Data Series Y
* @param null|mixed $xValues array of mixed Data Series X
*
* @return float|string
*/
public static function CORREL($yValues, $xValues = null)
{
if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) {
return Functions::VALUE();
}
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
return $bestFitLinear->getCorrelation();
}
/**
* COVAR.
*
* Returns covariance, the average of the products of deviations for each data point pair.
*
* @param mixed $yValues array of mixed Data Series Y
* @param mixed $xValues array of mixed Data Series X
*
* @return float|string
*/
public static function COVAR($yValues, $xValues)
{
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
return $bestFitLinear->getCovariance();
}
/**
* FORECAST.
*
* Calculates, or predicts, a future value by using existing values.
* The predicted value is a y-value for a given x-value.
*
* @param mixed $xValue Float value of X for which we want to find Y
* @param mixed $yValues array of mixed Data Series Y
* @param mixed $xValues of mixed Data Series X
*
* @return bool|float|string
*/
public static function FORECAST($xValue, $yValues, $xValues)
{
$xValue = Functions::flattenSingleValue($xValue);
try {
$xValue = StatisticalValidations::validateFloat($xValue);
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
return $bestFitLinear->getValueOfYForX($xValue);
}
/**
* GROWTH.
*
* Returns values along a predicted exponential Trend
*
* @param mixed[] $yValues Data Series Y
* @param mixed[] $xValues Data Series X
* @param mixed[] $newValues Values of X for which we want to find Y
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
*
* @return float[]
*/
public static function GROWTH($yValues, $xValues = [], $newValues = [], $const = true)
{
$yValues = Functions::flattenArray($yValues);
$xValues = Functions::flattenArray($xValues);
$newValues = Functions::flattenArray($newValues);
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
if (empty($newValues)) {
$newValues = $bestFitExponential->getXValues();
}
$returnArray = [];
foreach ($newValues as $xValue) {
$returnArray[0][] = [$bestFitExponential->getValueOfYForX($xValue)];
}
return $returnArray;
}
/**
* INTERCEPT.
*
* Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
*
* @param mixed[] $yValues Data Series Y
* @param mixed[] $xValues Data Series X
*
* @return float|string
*/
public static function INTERCEPT($yValues, $xValues)
{
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
return $bestFitLinear->getIntersect();
}
/**
* LINEST.
*
* Calculates the statistics for a line by using the "least squares" method to calculate a straight line
* that best fits your data, and then returns an array that describes the line.
*
* @param mixed[] $yValues Data Series Y
* @param null|mixed[] $xValues Data Series X
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
* @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics
*
* @return array|int|string The result, or a string containing an error
*/
public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)
{
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
if ($xValues === null) {
$xValues = $yValues;
}
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
if ($stats === true) {
return [
[
$bestFitLinear->getSlope(),
$bestFitLinear->getIntersect(),
],
[
$bestFitLinear->getSlopeSE(),
($const === false) ? Functions::NA() : $bestFitLinear->getIntersectSE(),
],
[
$bestFitLinear->getGoodnessOfFit(),
$bestFitLinear->getStdevOfResiduals(),
],
[
$bestFitLinear->getF(),
$bestFitLinear->getDFResiduals(),
],
[
$bestFitLinear->getSSRegression(),
$bestFitLinear->getSSResiduals(),
],
];
}
return [
$bestFitLinear->getSlope(),
$bestFitLinear->getIntersect(),
];
}
/**
* LOGEST.
*
* Calculates an exponential curve that best fits the X and Y data series,
* and then returns an array that describes the line.
*
* @param mixed[] $yValues Data Series Y
* @param null|mixed[] $xValues Data Series X
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
* @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics
*
* @return array|int|string The result, or a string containing an error
*/
public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)
{
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
if ($xValues === null) {
$xValues = $yValues;
}
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
foreach ($yValues as $value) {
if ($value < 0.0) {
return Functions::NAN();
}
}
$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
if ($stats === true) {
return [
[
$bestFitExponential->getSlope(),
$bestFitExponential->getIntersect(),
],
[
$bestFitExponential->getSlopeSE(),
($const === false) ? Functions::NA() : $bestFitExponential->getIntersectSE(),
],
[
$bestFitExponential->getGoodnessOfFit(),
$bestFitExponential->getStdevOfResiduals(),
],
[
$bestFitExponential->getF(),
$bestFitExponential->getDFResiduals(),
],
[
$bestFitExponential->getSSRegression(),
$bestFitExponential->getSSResiduals(),
],
];
}
return [
$bestFitExponential->getSlope(),
$bestFitExponential->getIntersect(),
];
}
/**
* RSQ.
*
* Returns the square of the Pearson product moment correlation coefficient through data points
* in known_y's and known_x's.
*
* @param mixed[] $yValues Data Series Y
* @param mixed[] $xValues Data Series X
*
* @return float|string The result, or a string containing an error
*/
public static function RSQ($yValues, $xValues)
{
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
return $bestFitLinear->getGoodnessOfFit();
}
/**
* SLOPE.
*
* Returns the slope of the linear regression line through data points in known_y's and known_x's.
*
* @param mixed[] $yValues Data Series Y
* @param mixed[] $xValues Data Series X
*
* @return float|string The result, or a string containing an error
*/
public static function SLOPE($yValues, $xValues)
{
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
return $bestFitLinear->getSlope();
}
/**
* STEYX.
*
* Returns the standard error of the predicted y-value for each x in the regression.
*
* @param mixed[] $yValues Data Series Y
* @param mixed[] $xValues Data Series X
*
* @return float|string
*/
public static function STEYX($yValues, $xValues)
{
try {
self::checkTrendArrays($yValues, $xValues);
self::validateTrendArrays($yValues, $xValues);
} catch (Exception $e) {
return $e->getMessage();
}
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
return $bestFitLinear->getStdevOfResiduals();
}
/**
* TREND.
*
* Returns values along a linear Trend
*
* @param mixed[] $yValues Data Series Y
* @param mixed[] $xValues Data Series X
* @param mixed[] $newValues Values of X for which we want to find Y
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
*
* @return float[]
*/
public static function TREND($yValues, $xValues = [], $newValues = [], $const = true)
{
$yValues = Functions::flattenArray($yValues);
$xValues = Functions::flattenArray($xValues);
$newValues = Functions::flattenArray($newValues);
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
if (empty($newValues)) {
$newValues = $bestFitLinear->getXValues();
}
$returnArray = [];
foreach ($newValues as $xValue) {
$returnArray[0][] = [$bestFitLinear->getValueOfYForX($xValue)];
}
return $returnArray;
}
}